Kegelschnitte - Teil 8

Hier werden (einführend) über Koeffizientenvergleich Translation und Rotation behandelt. Die elegantere Methode wird nach der Erklärung der "Hauptachsentransformation" in Kapitel 10 vorgestellt.

Allgemeiner "quadratischer Ausdruck" (Quadrik)

In R^2 ist ein allgemeiner Ausdruck Q: A $x^2 + B x y + C y^2 + D x + E y + F = 0$ möglich. Alle Kegelschnitte sind in dieser Formel enthalten.

{Zusätzlich sind Sonderfälle Punkt, Gerade(n) und leere Menge möglich. Diese entstehen bei Schnitt durch die Kegelspitze oder Schnitt mit einem Kreiszylinder - formal entsprechend einer Kegelspitze im Unendlichen.} Q beschreibt dann alle Fälle, also auch eine Verschiebung und Drehung. Prinzipiell lassen sich aus Q auch die bisher bekannten "Normallagen" herstellen. Dies wird Hauptachsentransformation genannt.

Die bekannten Formeln für die Normallage sind - direkt in der Form von Q angegeben:

Kreis $x^2 + y^2 - r^2 = 0$ Ellipse $b^2 x^2 + a^2 y^2 - a^2 b^2 = 0$ Hyperbel $b^2 x^2 - a^2 y^2 - a^2 b^2 = 0$ Parabel $y^2 - 2 p x = 0$

{Offenkundig bestehen dann verschiedene Bedingungen für die Koeffizienten A ... F. Weiteres dazu in 8.3.}

8.1 Translation

Eine Translation führt dazu, dass weitere Koeffizienten, die vorher = 0 sind $\neq 0$ werden. {Zusätzlich Änderung von F}

Der Ursprung soll verschoben werden $M(0 \mid 0) \rightarrow M'(x_o \mid y_o)$

Beispiel Kreis: $(x - x_0)^2 + (y - y_0)^2 - r^2 = x^2 + y^2 + (-2 x_0) x + (-2 y_0) y + [r^2 - x_0^2 - y_0^2] = 0$

Eine analoge Form mit A, C, D, E, $F \neq 0$ (und B = 0) für Ellipse und Hyperbel.

Beispiel Parabel: $(y - y_0)^2 - 2 p (x - x_0) = y^2 + (-2 p) x + (-2 y_0) y + [y_0^2 + 2 p x_0] = 0$ Ein Koeffizient A oder C ist bei der Parabel 0.

→ Falls nur eine Translation vorliegt, ist das gemischte Glied "xy" stets 0!

Umkehrung der Translation, also die Erzeugung der zu Q gehörenden Normalform. Dazu kann entweder ein Koeffizientenvergleich oder allgemeiner ein "visueller" Vergleich nach einer quadratischen Ergänzung benutzt werden.

♦ <u>8.1.1</u> Übungsbeispiel Ellipse.

Gegeben Q: $4 x^2 + 9 y^2 - 32 x - 90 y + 253 = 0$;

gesucht Normalform und Koordinaten des Mittelpunkts M'.

Allgemein: ell: $b^2 (x - x_0)^2 + a^2 (y - y_0)^2 = a^2 b^2$

Q:
$$b^2 x^2 + a^2 y^2 + (-2 b^2 x_0) x + (-2 a^2 y_0) y + [a^2 y_0^2 + b^2 x_0^2 - a^2 b^2] = 0$$

Koeffizientenvergleich:

$$b^2 = 4$$
; $a^2 = 9$; $x_0 = -32 / (-8) = 4$; $y_0 = -90 / (18) = 5$

{Kontrolle: 9.25 + 4.16 - 9.4 = 253} \rightarrow ell: $4 \times x^2 + 9 \times y^2 = 36$; M'(4 | 5)

Quadratische Ergänzung:

$$\frac{4 x^2 - 32 x + 9 y^2 - 90 y + 253 = 0}{4 x^2 - 32 x + 9 y^2 - 90 y + 253 = 0}$$

$$4(x^2 - 8x) + 9(y^2 - 10y) + 253 = 0$$
 {Koeffizient von x^2 , y^2 auf 1}

$$4(x^2 - 8x + 16 - 16) + 9(y^2 - 10y + 25 - 25) + 253 = 0$$
 {Ergänzung}

$$4(x-4)^2 + 9(y-5)^2 + 253 - 64 - 225 = 4(x-4)^2 + 9(y-5)^2 - 36 = 0$$

Vergleich: $x_0 = 4$; $y_0 = 5$; $a^2 = 9$; $b^2 = 4$; Kontrolle: $a^2 b^2 = 36$.

♦ 8.1.2 Übungsbeispiel Parabel.

Gegeben Q: $y^2 - 3x - 6y + 15 = 0$

Allgemein: Q: $y^2 + (-2p) x + (-2y_0) y + [y_0^2 + 2p x_0] = 0$

Koeffizientenvergleich:

$$p = 1.5$$
; $y_0 = 3$; $x_0 = (15 - 9) / 3 = 2 \rightarrow par$: $y^2 = 3 x$; $M'(2 \mid 3)$

Quadratische Ergänzung:

$$y^2 - 6y + 9 - 9 - 3x + 15 = 0 \rightarrow (y - 3)^2 = 3x - 6 = 3(x - 2)$$

Vergleich: $x_0 = 2$; $y_0 = 3$; p = 1.5

8.2 Rotation

Eine Rotation führt (im Allgemeinen) zum Auftreten eines gemischten Glieds "xy". {Die Formeln für die Translation allein erlauben noch eine Auflösung einer quadratischen Gleichung " $y^2 + p \ y + q = 0$ " um Daten für eine Darstellung y = y(x) zu erhalten. Jetzt ist dies nicht mehr möglich,

es liegt eine implizite Funktion F(x, y) vor.}

Drehung um ϕ (in Vektorschreibweise) $\mathbf{x_g} = \mathbf{D} \mathbf{x}$; $\mathbf{D} = \begin{pmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{pmatrix}$; $\{\mathbf{D}^{\text{-1}} = \mathbf{D}^{\text{T}}\}$

 \rightarrow Für die Koordinaten: $x = x_g \cos(\phi) + y_g \sin(\phi)$ und $y = -x_g \sin(\phi) + y_g \cos(\phi)$ Dies jeweils in die Koordinatengleichungen eingesetzt.

Ellipse el: $b^2 x^2 + a^2 y^2 = a^2 b^2$

Q:
$$x_g^2 [b^2 \cos^2(\phi) + a^2 \sin^2(\phi)] + y_g^2 [b^2 \sin^2(\phi) + a^2 \cos^2(\phi)] + x_g y_g [2 \sin(\phi) \cos(\phi) \cdot (b^2 - a^2)] - a^2 b^2 = 0$$

Hyperbel hyp: $b^2 x^2 - a^2 y^2 = a^2 b^2$

Q:
$$x_g^2 [b^2 \cos^2(\varphi) - a^2 \sin^2(\varphi)] + y_g^2 [b^2 \sin^2(\varphi) - a^2 \cos^2(\varphi)] + x_g y_g [2 \sin(\varphi) \cos(\varphi) \cdot (b^2 + a^2)] - a^2 b^2 = 0$$

Für einen **Kreis** sollte selbstverständlich eine Identität erhalten werden, weil eine Drehung nichts am Kreis ändert. (Ein einzelner Punkt wird gedreht, aber insgesamt bleibt die Koordinatengleichung bestehen.) Es ist $a^2 = b^2 = r^2$. Damit sind die Koeffizienten zu x_g^2 und $y_g^2 = 1$ und der Koeffizient zu $x_g y_g = 0$.

Parabel par: $y^2 = 2 p x$

Q:
$$\sin^2(\varphi) x_g^2 + [-2 \sin(\varphi) \cos(\varphi)] x_g y_g + \cos^2(\varphi) y_g^2 + [-2 p \cos(\varphi)] x_g + [-2 p \sin(\varphi)] y_g = 0$$

Die **Umkehrung der Rotation**, also die Erzeugung der zu Q gehörenden Normalform, ist (prinzipiell) wieder durch Koeffizientenvergleich möglich.

HINW

Wie eine solche Aufgabe mit der "Hauptachsentransformation" durchgeführt wird, wird später im Zusammenhang mit der allgemeinen Quadrik Q gezeigt! Dort wir auch gezeigt, dass eine weitere Mehrdeutigkeit besteht, wenn nach einem "Drehwinkel" gefragt ist.

Gesucht ist die Normalform zu Q und der Winkel ϕ , um den Q gegenüber der Normalform gedreht ist. {Trivial ist, dass mit ϕ auch jeder Winkel $\phi + n \cdot 2\pi$ gilt.}

♦ 8.2.1 Übungsbeispiel Parabel.

Gegeben Q: $(3/4) x^2 - (\sqrt{3}/2) x y + (1/4) y^2 - 2 x - 2 \sqrt{3} y = 0$

Q: $\sin^2(\varphi) x_g^2 + [-2\sin(\varphi)\cos(\varphi)] x_g y_g + \cos^2(\varphi) y_g^2 + [-2p\cos(\varphi)] x_g + [-2p\sin(\varphi)] y_g = 0$ Koeffizientenvergleich:

$$: \sin^2(\varphi) = 3/4 \rightarrow \sin(\varphi) = \sqrt{3}/2 \rightarrow \varphi = 60^\circ \text{ (oder } 120^\circ\text{)}$$

 $: \cos^2(60^\circ) = 1/4 \checkmark$

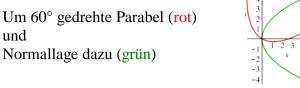
$$<$$
xy $>$: - 2 sin(60°) cos(60°) = - $\sqrt{3}$ /2 \checkmark

$$\langle x \rangle$$
: $p = -2 / [-2 \cos(60^\circ)] = 2$

$$\langle y \rangle$$
: - 2 p sin(60°) = 2 · 2 · $\sqrt{3}$ /2 = -2 $\sqrt{3}$ \checkmark

 \rightarrow Normalform par: $y^2 = 2 p x = 4 x$

Um 60° gedrehte Parabel (rot)



Für den zweiten Winkel $\varphi = 120^{\circ}$ würde gelten:

$$<$$
x²>: 3/4 \checkmark ; $<$ y²>: 1/4 \checkmark ; aber $<$ xy>: + $\sqrt{3}$ /2 \star

{und eines der Vorzeichen von $\langle x \rangle$ oder $\langle y \rangle$ ist falsch für $p = \pm 2$ }

♦ 8.2.2 Übungsbeispiel Ellipse.

Gegeben Q:
$$(37/4) x^2 - (21/2) \sqrt{3} xy + (79/4) y^2 - 100 = 0$$

Q: $A x^2 + B x y + C y^2 + F = 0$
 $A = b^2 \cos^2(\varphi) + a^2 \sin^2(\varphi)$; $C = b^2 \sin^2(\varphi) + a^2 \cos^2(\varphi)$
 $B = 2 \sin(\varphi) \cos(\varphi) \cdot (b^2 - a^2)$; $F = -a^2 b^2$

Koeffizientenvergleich:

Am einfachsten scheint ein Ansatz für die Summe A + C:

A + C =
$$b^2 [\cos^2(\phi) + \sin^2(\phi)] + a^2 [\cos^2(\phi) + \sin^2(\phi)] = a^2 + b^2 (= 29)$$

 $b^2 = -F/a^2 \rightarrow a^2 - F/a^2 = A + C \rightarrow a^4 - (A + C) a^2 - F = 0$
 $a^4 - 29 a^2 + 100 = 0 \rightarrow a^2 = 29/2 \pm [441/4]^{1/2} = \{25; 4\} \rightarrow b^2 = \{4; 25\}$

Die erste Lösung $\{a^2, b^2\} = \{25, 4\}$ passt zur üblichen Konvention, dass eine Ellipse mit der größeren Achse a in der x-Richtung angeordnet wird.

{Die zweite Lösung enthält die Vertauschung, die dann größere Achse b zeigt in y-Richtung.}

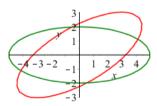
Es ist auch A =
$$\cos^2(\varphi)$$
 [b² - a²] + a² $\rightarrow \cos^2(\varphi)$ = [(37/4) - 25] / (-21) = 3/4 $\rightarrow \sin^2(\varphi)$ = 1/4 Das gilt für $\varphi = 30^\circ$ - und (leider auch) 150°, 210°, 330°. {und + n·2 π }

(Die Winkel $\phi > 180^{\circ}$ führen zu keinen neuen Koordinatengleichungen, die Punkte sind dann am Ursprung gespiegelt.) Vorzeichen von B:

$$\phi = 30^{\circ} \colon \sin(\phi) > 0, \cos(\phi) > 0; \sin(\phi) \cdot \cos(\phi) > 0, (b^{2} - a^{2}) < 0$$
 damit B < 0
$$\phi = 150^{\circ} \colon \sin(\phi) > 0, \cos(\phi) < 0; \sin(\phi) \cdot \cos(\phi) < 0, (b^{2} - a^{2}) < 0$$
 damit B > 0

Für $\varphi = 30^{\circ}$ folgt dasselbe Vorzeichen wie für Q der Aufgabenstellung.

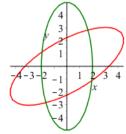
Normalform el: $4 x^2 + 25 y^2 = 100$ Um 30° gedrehte Ellipse (rot) und Normallage dazu (grün)



{Für $\varphi = 150^{\circ}$ ist die Ellipse an der y-Achse gespiegelt.}

Für die "unübliche" Anordnung $a^2 = 4$, $b^2 = 5$ liefert $\varphi = 120^\circ$ dasselbe O.

Alternative Normalform el: $25 x^2 + 4 y^2 = 100$ Um 120° gedrehte Ellipse (rot) und Normallage dazu (grün)



Beide Lösungen entsprechen einer Normalform. In beiden Fällen sind die Ellipsenachsen parallel zu den Achsen des Koordinatensystems. Durch die zusätzliche Forderung "a > b ist gewünscht" wird der übliche Fall davon ausgewählt. Der Lösungsweg über die Summe "A + C" führt schnell zur Normalform; falls der Drehwinkel φ gesucht ist, müssen weitere Koeffizienten untersucht werden.

8.3 Koeffizienten in der allgemeinen Quadrik

Alle möglichen Kegelschnitte lassen sich durch den allgemeinen Ausdruck

Q:
$$A x^2 + B x y + C y^2 + D x + E y + F = 0$$
 beschreiben.

Wenn wir uns auf die hier behandelten Fälle Ellipse, Hyperbel und Parabel beschränken, kann man aus den Koeffizienten A, B und C die Art des Kegelschnitts schnell ermitteln.

Im Zusammenhang mit dem Eigenwert-Problem, siehe Kapitel 9, werden die Spur und die Determinante einer Matrix noch einmal vorkommen. Diese Größen sind aber auch interessant, weil sie "Invarianten" sind. Eine Translation und/oder Drehung verändert diese nicht!

Matrix
$$\mathbf{M} = \begin{pmatrix} A & B/2 \\ B/2 & C \end{pmatrix}$$
 Spur(\mathbf{M}) = A + C {Summe der Diagonal-Elemente}
$$\det(\mathbf{M}) = A \cdot C - B^2 / 4$$

Zuerst die Werte für jeweils die Normalform

Ellipse
$$b^2 x^2 + a^2 y^2 = a^2 b^2$$

Ellipse
$$b^2 x^2 + a^2 y^2 = a^2 b^2$$

$$\mathbf{M} = \begin{pmatrix} b^2 & 0 \\ 0 & a^2 \end{pmatrix} \quad \text{Spur}(\mathbf{M}) = b^2 + a^2 \quad \det(\mathbf{M}) = a^2 b^2$$
Hyperbel $b^2 x^2 - a^2 y^2 = a^2 b^2$

$$\mathbf{M} = \begin{pmatrix} b^2 & 0 \\ 0 & -a^2 \end{pmatrix} \text{ Spur}(\mathbf{M}) = b^2 - a^2 \qquad \det(\mathbf{M}) = -a^2 b^2$$

Parabel
$$\mathbf{M} = \begin{pmatrix} 0 & -a^2 \end{pmatrix}$$
 Spur(\mathbf{M}) = \mathbf{b}^2 - \mathbf{a}^2 det(\mathbf{M}) = -
$$\mathbf{y}^2 = 2 \mathbf{p} \mathbf{x}$$

$$\mathbf{M} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
 Spur(\mathbf{M}) = 1 det(\mathbf{M}) = 0

UnterscheidungSpur(
$$\mathbf{M}$$
) $\det(\mathbf{M})$ Ellipse $\neq 0$ >0 Hyperbel $\neq 0$ < 0 Parabel $= 1$ $= 0$ {außerdem unmittelbar: nur y² oder x²}

Einfluss einer Translation

Eine Translation, z.B. ell: $b^2 (x - x_0)^2 + a^2 (y - y_0)^2 = a^2 b^2$, ändert nichts an den quadratischen Termen, sondern fügt nur neue lineare Terme dazu und ändert das absolute Glied.

 \Rightarrow M bleibt gleich \Rightarrow Das Unterscheidungs-Kriterium ist identisch.

Einfluss einer Rotation

Die Koeffizienten ändern sich und es entsteht ein neues gemischtes Glied "xy".

Wir werden aber sehen, dass sich Spur(M) und det(M) nicht ändern!

In den Herleitungen: Schreibtechnische Abkürzung: $\sin(\varphi) \to S$; $\cos(\varphi) \to K$

$$A = b^{2} \cos^{2}(\varphi) + a^{2} \sin^{2}(\varphi); B = 2 \sin(\varphi) \cos(\varphi) \cdot (b^{2} - a^{2}); C = b^{2} \sin^{2}(\varphi) + a^{2} \cos^{2}(\varphi)$$

Spur(M) =
$$b^2 K^2 + a^2 S^2 + b^2 S^2 + a^2 K^2 = b^2 + a^2 \checkmark$$

 \bullet Hyperbel: $b^2 x^2 - a^2 v^2 \rightarrow Ax^2 + B x v + C v^2$

$$A = b^{2} \cos^{2}(\varphi) - a^{2} \sin^{2}(\varphi); B = 2 \sin(\varphi) \cos(\varphi) \cdot (b^{2} + a^{2}); C = b^{2} \sin^{2}(\varphi) - a^{2} \cos^{2}(\varphi)$$

Spur(M) =
$$b^2 K^2 - a^2 S^2 + b^2 S^2 - a^2 K^2 = b^2 - a^2 \checkmark$$

$$\det(\mathbf{M}) = \{b^2 \mathbf{K}^2 - a^2 \mathbf{S}^2\} \{b^2 \mathbf{S}^2 - a^2 \mathbf{K}^2\} - \mathbf{S}^2 \mathbf{K}^2 (b^2 + a^2)^2$$

$$= b^4 \mathbf{S}^2 \mathbf{K}^2 - a^2 b^2 \mathbf{S}^4 - a^2 b^2 \mathbf{K}^4 + a^4 \mathbf{S}^2 \mathbf{K}^2 - b^4 \mathbf{S}^2 \mathbf{K}^2 - 2 a^2 b^2 \mathbf{S}^2 \mathbf{K}^2 - a^4 \mathbf{S}^2 \mathbf{K}^2$$

$$= a^2 b^2 \{-\mathbf{S}^4 - 2 \mathbf{S}^2 \mathbf{K}^2 - \mathbf{K}^4\} = -a^2 b^2 (\mathbf{S}^2 + \mathbf{K}^2)^2 = -a^2 b^2 \checkmark$$

♦ Parabel:
$$y^2 \rightarrow Ax^2 + B \times y + C y^2$$

$$A = \sin^2(\varphi); B = -2\sin(\varphi)\cos(\varphi); C = \cos^2(\varphi)$$

Spur(M) =
$$S^2 + K^2 = 1$$
; det(M) = $S^2 K^2 - S^2 K^2 = 0$

 \Rightarrow **M** ändert sich, aber Spur(**M**) und det(**M**) bleiben gleich.